醫用電子內窺鏡是一種可插入人體腔體和內臟腔進行直接觀察、診斷和的醫用電子光學儀器。可以直接觀察人體內部器官的組織形態,提高診斷的準確性。醫療外科診療技術與醫用內窺鏡相結合的諸多優勢已得到醫學界的認可。下面講一下醫用電子內窺鏡的基本結構和工作原理。
Medical electronic endoscope is a kind of medical electronic optical instrument that can be inserted into human body cavity and visceral cavity for direct observation, diagnosis and treatment. It can directly observe the tissue morphology of human internal organs and improve the accuracy of diagnosis. Many advantages of the combination of medical surgical diagnosis and treatment technology and medical endoscope have been recognized by the medical community. Now let's talk about the basic structure and working principle of medical electronic endoscope.
一、基本結構
1、 Basic structure
電子內窺鏡的主要結構由CCD耦合腔鏡、腔內冷光照明系統、視頻處理系統、顯示打印系統組成。CCD耦合腔鏡將CCD耦合裝置放置在腔鏡的,直接對腔內的組織或部位進行拍照,并通過電纜將信號傳輸到圖像的中心。
The main structure of electronic endoscope is composed of CCD coupling cavity mirror, cavity cold light lighting system, video processing system and display printing system. CCD coupling cavity mirror places the CCD coupling device at the tip of the cavity mirror, directly takes photos of the tissues or parts in the cavity, and transmits the signal to the center of the image through the cable.
內窺鏡的歷史經歷了從硬式光學內窺鏡到光纖內窺鏡再到電子內窺鏡的過程。內窺鏡不通過光學透鏡或光纖傳輸圖像,而是通過安裝在內窺鏡的稱為“微型相機”的光電耦合元件CCD將光能轉換為電能,然后由圖像處理器“重構”.高清、逼真的圖像顯示在監視器屏幕上。
The history of endoscope has gone through the process from hard optical endoscope to optical fiber endoscope and then to electronic endoscope. The endoscope does not transmit images through optical lens or optical fiber, but converts light energy into electric energy through the photoelectric coupling element CCD called "micro camera" installed on the tip of the endoscope, and then "reconstructs" by the image processor High definition and realistic images are displayed on the monitor screen.
二、工作原理
2、 Working principle
電子內窺鏡的工作原理是冷光源照射到被檢查或手術部位后,物鏡將待測物體成像在CCD感光面上,CCD將光信號轉換成電信號,即通過電纜傳輸到視頻處理器。顯示在監視器上。
The working principle of the electronic endoscope is that after the cold light source irradiates the examined or operated part, the objective lens images the object to be measured on the CCD photosensitive surface, and the CCD converts the optical signal into an electrical signal, that is, it is transmitted to the video processor through the cable. Displayed on the monitor.
CCD的感光面由規則排列的二極管組成,每個二極管稱為一個像素,像素的數量決定了圖像的質量。目前的生產工藝一般可以達到30萬到41萬像素。
The photosensitive surface of CCD is composed of regularly arranged diodes. Each diode is called a pixel. The number of pixels determines the quality of the image. The current production process can generally reach 300000 to 410000 pixels.
電子內窺鏡的靶面和有效尺寸約為Fi(外徑)=2mm,CCD輸出信號的一級放大電路也應包含在2mm的圓柱體積內。電子內窺鏡圖像的質量主要取決于CCD的性能,其次是驅動電路和后處理系統的技術指標,包括分辨率、靈敏度、信號噪聲、光譜響應、暗電流、動態范圍和圖像滯后.
The target surface and effective size of the electronic endoscope are about fi (outer diameter) =2mm, and the primary amplification circuit of the CCD output signal should also be included in the 2mm cylindrical volume. The quality of electronic endoscope image mainly depends on the performance of CCD, followed by the technical indicators of driving circuit and post-processing system, including resolution, sensitivity, signal noise, spectral response, dark current, dynamic range and image lag
內窺鏡設備維修人員認為有幾種方法可以安裝CCD。當設計CCD替代纖維鏡中的光纖圖像光束時,形成了將CCD安裝在電子內窺鏡的一種方法,即CCD的受光面垂直于掃描方向。物鏡的光軸。這是一個非常簡單的結構。在這種情況下,必須使用超小型CCD,以便縮短的剛性部分。
There are several ways to install CCD. When the CCD is designed to replace the optical fiber image beam in the fiber mirror, a method of installing the CCD on the tip of the electronic endoscope is formed, that is, the light receiving surface of the CCD is perpendicular to the scanning direction. Optical axis of objective lens. This is a very simple structure. In this case, a subminiature CCD must be used in order to shorten the rigid part of the tip.
二是CCD的受光面與物鏡的光軸平行,物鏡發出的光通過90°轉向棱鏡照射到CCD的受光面上。這種結構的電子內窺鏡增加像素數的空間很大,目前逐漸采用這種安裝方式。
Second, the light receiving surface of the CCD is parallel to the optical axis of the objective lens, and the light emitted by the objective lens shines on the light receiving surface of the CCD through a 90 ° turning prism. The electronic endoscope with this structure has a large space to increase the number of pixels, and this installation method is gradually adopted at present.
That's all for the basic structure and working principle of medical electronic endoscope. If your need is to buy or repair the equipment, you can follow our website http://www.veeker.xyz , to answer your questions.